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Semantic Networks 
John F. Sowa  

A semantic network or net is a graphic notation for representing knowledge in patterns of 
interconnected nodes and arcs. Computer implementations of semantic networks were 
first developed for artificial intelligence and machine translation, but earlier versions 
have long been used in philosophy, psychology, and linguistics.  

What is common to all semantic networks is a declarative graphic representation that can 
be used either to represent knowledge or to support automated systems for reasoning 
about knowledge. Some versions are highly informal, but other versions are formally 
defined systems of logic. Following are six of the most common kinds of semantic 
networks, each of which is discussed in detail in one section of this article.  

1. Definitional networks emphasize the subtype or is-a relation between a concept 
type and a newly defined subtype. The resulting network, also called a 
generalization or subsumption hierarchy, supports the rule of inheritance for 
copying properties defined for a supertype to all of its subtypes. Since definitions 
are true by definition, the information in these networks is often assumed to be 
necessarily true.  

2. Assertional networks are designed to assert propositions. Unlike definitional 
networks, the information in an assertional network is assumed to be contingently 
true, unless it is explicitly marked with a modal operator. Some assertional 
netwoks have been proposed as models of the conceptual structures underlying 
natural language semantics.  

3. Implicational networks use implication as the primary relation for connecting 
nodes. They may be used to represent patterns of beliefs, causality, or inferences.  

4. Executable networks include some mechanism, such as marker passing or 
attached procedures, which can perform inferences, pass messages, or search for 
patterns and associations.  

5. Learning networks build or extend their representations by acquiring knowledge 
from examples. The new knowledge may change the old network by adding and 
deleting nodes and arcs or by modifying numerical values, called weights, 
associated with the nodes and arcs.  

6. Hybrid networks combine two or more of the previous techniques, either in a 
single network or in separate, but closely interacting networks.  

Some of the networks have been explicitly designed to implement hypotheses about 
human cognitive mechanisms, while others have been designed primarily for computer 
efficiency. Sometimes, computational reasons may lead to the same conclusions as 
psychological evidence. The distinction between definitional and assertional networks, 
for example, has a close parallel to Tulving's (1972) distinction between semantic 
memory and episodic memory.  
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Network notations and linear notations are both capable of expressing equivalent 
information, but certain representational mechanisms are better suited to one form or the 
other. Since the boundary lines are vague, it is impossible to give necessary and sufficient 
conditions that include all semantic networks while excluding other systems that are not 
usually called semantic networks. Section 7 of this article discusses the syntactic 
mechanisms used to express information in network notations and compares them to the 
corresponding mechanisms used in linear notations.  

1. Definitional Networks 
The oldest known semantic network was drawn in the 3rd century AD by the Greek 
philosopher Porphyry in his commentary on Aristotle's categories. Porphyry used it to 
illustrate Aristotle's method of defining categories by specifying the genus or general 
type and the differentiae that distinguish different subtypes of the same supertype. Figure 
1 shows a version of the Tree of Porphyry, as it was drawn by the logician Peter of Spain 
(1329). It illustrates the categories under Substance, which is called the supreme genus or 
the most general category.  

 

Figure 1.  Tree of Porphyry, as drawn by Peter of Spain (1329)  
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Despite its age, the Tree of Porphyry represents the common core of all modern 
hierarchies that are used for defining concept types. In Figure 1, the genus Substance with 
the differentia material is Body and with the differentia immaterial is Spirit. The modern 
rule of inheritance is a special case of the Aristotelian syllogisms, which specify the 
conditions for inheriting properties from supertypes to subtypes: LivingThing inherits 
material Substance from Body and adds the differentia animate; Human inherits sensitive 
animate material Substance and adds the differentia rational. Aristotle, Porphyry, and the 
medieveal logicians also distinguished the categories or universals from the individual 
instances or particulars, which are listed at the bottom of Figure 1. Aristotle's methods of 
definition and reasoning are still used in artificial intelligence, object-oriented 
programming languages, and every dictionary from the earliest days to the present.  

The first implementations of semantic networks were used to define concept types and 
patterns of relations for machine translation systems. Silvio Ceccato (1961) developed 
correlational nets, which were based on 56 different relations, including subtype, 
instance, part-whole, case relations, kinship relations, and various kinds of attributes. He 
used the correlations as patterns for guiding a parser and resolving syntactic ambiguities. 
Margaret Masterman's system at Cambridge University (1961) was the first to be called a 
semantic network. She developed a list of 100 primitive concept types, such as Folk, 
Stuff, Thing, Do, and Be. In terms of those primitives, her group defined a conceptual 
dictionary of 15,000 entries. She organized the concept types into a lattice, which permits 
inheritance from multiple supertypes. The basic principles and even many of the 
primitive concepts have survived in more recent systems of preference semantics (Wilks 
& Fass 1992).  

Among current systems, the description logics include the features of the Tree of 
Porphyry as a minimum, but they may also add various extensions. They are derived 
from an approach proposed by Woods (1975) and implemented by Brachman (1979) in a 
system called Knowledge Language One (KL-ONE). As an example, Figure 2 shows a 
KL-ONE network that defines the concepts Truck and TrailerTruck as subtypes of 
Vehicle.  
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Figure 2.  Truck and TrailerTruck concepts defined in KL-ONE  

Figure 2 has nine ovals for concept nodes and nine arrows, which represent different 
kinds of links. The white ovals represent generic concepts for the types, as distinguished 
from the shaded oval, which is an individual concept for the instance 18. The oval 
marked with an asterisk * indicates that Integer is a built-in or primitive type. The 
concepts Truck and TrailerTruck are defined in Figure 2, but Vehicle, Trailer, 
WtMeasure, and VolMeasure would have to be defined by other KL-ONE diagrams.  

The double-line arrows represent subtype-supertype links from TrailerTruck to Truck and 
from Truck to Vehicle. The arrows with a circle in the middle represent roles. The Truck 
node has four roles labeled UnloadedWt, MaxGrossWt, CargoCapacity, and 
NumberOfWheels. The TrailerTruck node has two roles, one labeled HasPart and one 
that restricts the NumberOfWheels role of Truck to the value 18. The notation v/r at the 
target end of the role arrows indicates value restrictions or type constraints on the 
permissible values for those roles.  

The tree of Porphyry, KL-ONE, and many versions of description logics are subsets of 
classical first-order logic (FOL). They belong to the class of monotonic logics, in which 
new information monotonically increases the number of provable theorems, and none of 
the old information can ever be deleted or modified. Some versions of description logics 
support nonmonotonic reasoning, which allows default rules to add optional information 
and canceling rules to block inherited information. Such systems can be useful for many 
applications, but they can also create problems of conflicting defaults, as illustrated in 
Figure 3.  



Source: http://www.jfsowa.com/pubs/semnet.htm 

5 

 

Figure 3.  Conflicting defaults in a definitional network  

The Nixon diamond on the left shows a conflict caused by inheritance from two different 
supertypes: by default, Quakers are pacifists, and Republicans are not pacifists. Does 
Nixon inherit pacifism along the Quaker path, or is it blocked by the negation on the 
Republican path? On the right is another diamond in which the subtype RoyalElephant 
cancels the property of being gray, which is the default color for ordinary elephants. If 
Clyde is first mentioned as an elephant, his default color would be gray, but later 
information that he is a RoyalElephant should caused the previous information to be 
retracted. To resolve such conflicts, many developers have rejected local defaults in favor 
of more systematic methods of belief revision that can guarantee global consistency.  

Although the basic methods of descripton logics are as old as Aristotle, they remain a 
vital part of many versions of semantic networks and other kinds of systems. Much of the 
ongoing research on description logics has been devoted to increasing their expressive 
power while remaining within an efficiently computable subset of logic (Brachman et al. 
1991; Woods & Schmolze 1992). Two recent description logics are DAML and OIL 
(Horrocks et al. 2001), which are intended for representing knowledge in the semantic 
web (Berners-Lee et al. 2001) a giant semantic network that spans the entire Internet.  

2. Assertional Networks 
Gottlob Frege (1879) developed a tree notation for the first complete version of first-
order logic his Begriffsschrift or concept writing. Charles Sanders Peirce (1880, 1885) 
independently developed an algebraic notation, which with a change of symbols by 
Peano (1889) has become the modern notation for predicate calculus. Although Peirce 
invented the algebraic notation, he was never fully satisfied with it. As early as 1882, he 
was searching for a graphic notation, similar to the notations used in organic chemistry, 
that would more clearly show "the atoms and molecules of logic." Figure 4 shows one of 
his relational graphs, which represents the sentence, A Stagirite teacher of a Macedonian 
conqueror of the world is a disciple and an opponent of a philosopher admired by 
Church Fathers.  
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Figure 4.  A relational graph  

Figure 4 contains three branching lines of identity, each of which corresponds to an 
existentially quantified variable in the algebraic notation. The words and phrases attached 
to those lines correspond to the relations or predicates in the algebraic notation. With that 
corresponcence, Figure 4 can be translated to the following formula in predicate calculus:  

( x)( y)( z)(isStagirite(x) teaches(x,y) isMacedonian(y) conquersTheWorld(y) 
isDiscipleOf(y,z) isOpponentOf(y,z) isAdmiredByChurchFathers(z) ).  

 
As this formula illustrates, a relational graph only represents two logical operators: the 
conjunction and the existential quantifier . Other operators, such as negation ~, 
disjunction , implication , and the universal quantifier , are more difficult to 
express because they require some method for demarcating the scope that part of the 
formula that is governed by the operator. The problem of representing scope, which 
Peirce faced in his graphs of 1882, also plagued the early semantic networks used in 
artificial intelligence 80 years later.  

In 1897, Peirce made a simple, but brilliant discovery that solved all the problems at 
once: he introduced an oval that could enclose and negate an arbitrarily large graph or 
subgraph. Then combinations of ovals with conjunction and the existential quantifier 
could express all the logical oprerators used in the algebraic notation (Peirce 1909). That 
innovation transformed the relational graphs into the system of existential graphs (EG), 
which Peirce called "the logic of the future" (Roberts 1973). The implication , for 
example, could be represented with a nest of two ovals, since (p q) is equivalent to 
~(p ~q). At the left of Figure 5 is an existential graph for the sentence If a farmer owns 
a donkey, then he beats it.  
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Figure 5.  EG and DRS for "If a farmer owns a donkey, then he beats it."  

The outer oval of Figure 5 is the antecedent or if part, which contains farmer, linked by a 
line representing ( x) to owns, which is linked by a line representing ( y) to donkey. 
The subgraph in the outer oval may be read If a farmer x owns a donkey y. The lines x 
and y are extended into the inner oval, which represents the consequent, then x beats y. 
Figure 5 may be translated to the following algebraic formula:  

~( x)( y)(farmer(x) donkey(y) owns(x,y) ~beats(x,y)).  
 
This formula is equivalent to  
 
( x)( y)((farmer(x) donkey(y) owns(x,y)) beats(x,y)).  
 
For comparison, the diagram on the right of Figure 5 is a discourse representation 
structure (DRS), which Hans Kamp (1981; Kamp and Reyle 1993) invented to represent 
natural language semantics. Instead of nested ovals, Kamp used boxes linked by arrows; 
and instead of lines of identity, Kamp used variables. But the logical structures are 
formally equivalent, and the same techniques for representing logic in natural language 
can be adapted to either notation.  

In linguistics, Lucien Tesnière (1959) developed graph notations for his system of 
dependency grammar. Figure 6 shows one of his graphs for the sentence L'autre jour, au 
fond d'un vallon, un serpent piqua Jean Fréron (The other day, at the bottom of a valley, 
a snake stung Jean Fréron). At the top is the verb piqua (stung), from which the words 
that depend directly on the verb are hanging: the subject (serpent), the object (Jean), and 
two prepositional phrases. The bull's eye symbol indicates an implicit preposition (à). 
Every word other than piqua is hanging below some word on which it depends.  



Source: http://www.jfsowa.com/pubs/semnet.htm 

8 

 

Figure 6.  A dependency graph in Tesnière's notation  

Tesnière has had a major influence on linguistic theories that place more emphasis on 
semantics than on syntax. David Hays (1964) presented dependency theory as a formal 
alternative to Chomsky's syntactic notations. Klein and Simmons (1963) adopted it for a 
machine translation system. Valency theory (Allerton 1982) and Meaning-Text Theory 
(Mel'&ccaron;uk 1973; Steele 1990) are two ongoing developments of the dependency 
approach. The dependency theories have also been strongly influenced by case grammar 
(Fillmore 1968), which provides a convenient set of labels for the arcs of the graphs 
(Somers 1987).  

Under the influence of Hays and Simmons, Roger Schank adopted the dependency 
approach, but shifted the emphasis to concepts rather than words (Schank & Tesler 1969; 
Schank 1975). Figure 5 shows a conceptual dependency graph for the sentence A dog is 
greedily eating a bone. Instead of Tesnière's tree notation, Schank used different kinds of 
arrows for different relations, such as for the agent-verb relation or an arrow marked 
with o for object. He replaced the verb eat with one of his primitive acts ingest; he 
replaced adverbs like greedily with adjective forms like greedy; and he added the linked 
arrows marked with d for direction to show that the bone goes from some unspecified 
place into the dog (the subscript 1 indicates that the bone went into the same that who 
ingested it).  
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Figure 7.  Schank's notation for conceptual dependencies  

Conceptual dependencies were primarily suited to representing information at the 
sentence level, but Schank and his colleagues later developed notations for representing 
larger structures, in which the sentence-level dependencies occurred as nested 
substructures. The larger structures were called scripts (Schank & Abelson 1977), 
memory organization packets (MOPs), and thematic organization packets (TOPs) 
(Schank 1982). To learn or discover the larger structures automatically, case-based 
reasoning has been used to search for commonly occurring patterns among the lower-
level conceptual dependencies (Schank et al. 1994).  

Logically, Tesnière's dependency graphs have the same expressive power as Peirce's 
relational graphs of 1882: the only logical operators they can represent are conjunction 
and the existential quantifier. Even when those graphs have nodes marked with other 
logical operators, such as disjunction, negation, or the universal quantifier, they fail to 
express their scope correctly. During the 1970s, various network notations were 
developed to represent the scope of logical operators. The most successful approach was 
the method of adding explicit nodes to show propositions. Logical operators would 
connect the propositional nodes, and relations would either be attached to the 
propositional nodes or be nested inside them. By those criteria, Frege's Begriffsschrift, 
Peirce's existential graphs, and Kamp's discourse representation structures could be called 
propositional semantic networks. In Figure 5, for example, the two EG ovals and the two 
DRS boxes represent propositions, each of which contains nested propositions.  

The first propositional semantic network to be implemented in AI was the MIND system, 
developed by Stuart Shapiro (1971). It later evolved into the Semantic Network 
Processing System (SNePS), which has been used to represent a wide range of features in 
natural language semantics (Shapiro 1979; Maida & Shapiro 1982; Shapiro & Rappaport 
1992). Figure 8 shows the SNePS representation for the sentence Sue thinks that Bob 
believes that a dog is eating a bone. Each of the nodes labeled M1 through M5 represents 
a distinct proposition, whose relational content is attached to the propositional node.  
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Figure 8.  Propositions represented in SNePS  

The proposition M1 states that Sue is the experiencer (Expr) of the verb think, whose 
theme (Thme) is another proposition M2. For M2, the experiencer is Bob, the verb is 
believe, and the theme is a proposition M3. For M3, the agent (Agnt) is some entity B1, 
which is a member of the class Dog, the verb is eat, and the patient (Ptnt) is an entity B2, 
which is a member of the class Bone. As Figure 8 illustrates, propositions may be used at 
the metalevel to make statements about other propositions: M1 states that M2 is thought 
by Sue, and M2 states that M3 is believed by Bob.  

Conceptual graphs (Sowa 1976, 1984, 2000) are a variety of propositional semantic 
networks in which the relations are nested inside the propositional nodes. They evolved 
as a combination of the linguistic features of Tesnière's dependency graphs and the 
logical features of Peirce's existential graphs with strong influences from the work in 
artificial intelligence and computational linguistics. Figure 9 shows a comparison of 
Peirce's EG from Figure 5 with a conceptual graph (CG) that represents the sentence If a 
farmer owns a donkey, then he beats it.  
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Figure 9.  Comparison of the EG from Figure 5 with a CG for the same sentence  

The most obvious differences between the EG and the CG are cosmetic: the ovals are 
squared off to form boxes, and the implicit negations in the EG are explicitly marked If 
and Then for better readability. The more subtle differences are in the range of 
quantification and the point where the quantification occurs. In an EG, a line of identity 
represents an existential quantifier ( x) or ( y), which ranges over anything in the 
domain of discourse; but in a CG, each box, called a concept, represents a quantifier (
x:Farmer) or ( y:Donkey), which is restricted to the type or sort Farmer or Donkey. In 
the CG, the arcs with arrows indicate the argument of the relations (numbers are used to 
distinguish the arcs for relations with more than two arguments). Nodes such as [T] 
represent the pronouns he or it, which are linked to their antecedents by dotted lines 
called coreference links. As another example, Figure 10 shows the CG that corresponds 
to the SNePS diagram in Figure 8.  

 

Figure 10.  A conceptual graph that corresponds to Figure 8  
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Figures 8 and 10 both represent the sentence Sue thinks that Bob believes that a dog is 
eating a bone. The SNePS proposition M1 corresponds to the entire CG in Figure 10; M2 
corresponds to the concept box that contains the CG for the nested proposition Bob 
believes that a dog is eating a bone; and M3 corresponds to the concept box that contains 
the CG for the more deeply nested proposition A dog is eating a bone. Each concept box 
in a CG could be considered a separate proposition node that could be translated to a 
complete sentence by itself. The concept [Dog] could be expressed by the sentence There 
exists a dog, which corresponds to the SNePS proposition M4. The concept [Person: Sue] 
expresses the sentence There exists a person named Sue. By such methods, it is possible 
to translate propositions expressed in SNePS or CGs to equivalent propositions in the 
other notation. For most sentences, the translations are nearly one-to-one, but sentences 
that take advantage of special features in one notation may require a more roundabout 
paraphrase when translated to the other.  

Different versions of propositional semantic networks have different syntactic 
mechanisms for associating the relational content with the propositional nodes, but 
formal translation rules can be defined for mapping one version to another. Peirce, Sowa, 
and Kamp used strictly nested propositional enclosures with variables or lines to show 
coreferences between different enclosures. Frege and Shapiro attached the relations to the 
propositional nodes (or lines in Frege's notation). Gary Hendrix (1975, 1979) developed a 
third option: partitions that enclose the relational content, but with the option of 
overlapping enclosures if they have common components. Formally, Hendrix's solution is 
equivalent to Shapiro's; but as a practical matter, it is not possible to draw the partitions 
on a plane sheet if multiple enclosures overlap in complex ways.  

3. Implicational Networks 
An implicational network is a special case of a propositional semantic network in which 
the primary relation is implication. Other relations may be nested inside the propositional 
nodes, but they are ignored by the inference procedures. Depending on the interpretation, 
such networks may be called belief networks, causal networks, Bayesian networks, or 
truth-maintenance systems. Sometimes the same graph can be used with any or all of 
these interpretations. Figure 11 shows possible causes for slippery grass: each box 
represents a proposition, and the arrows show the implications from one proposition to 
another. If it is the rainy season, the arrow marked T implies that it recently rained; if not, 
the arrow marked F implies that the sprinker is in use. For boxes with only one outgoing 
arrow, the truth of the first proposition implies the truth of the second, but falsity of the 
first makes no prediction about the second.  
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Figure 11.  An implicational network for reasoning about wet grass  

Suppose someone walking across a lawn slips on the grass. Figure 11 represents the kind 
of background knowledge that the victim might use to reason about the cause. A likely 
cause of slippery grass is that the grass is wet. It could be wet because either the sprinkler 
had been in use or it had recently rained. If it is the rainy season, the sprinkler would not 
be in use. Therefore, it must have rained.  

The kind of reasoning described in the previous paragraph can be performed by various 
AI systems. Chuck Rieger (1976) developed a version of causal networks, which he used 
for analyzing problem descriptions in English and translating them to a network that 
could support metalevel reasoning. Benjamin Kuipers (1984, 1994), who was strongly 
influenced by Rieger's approach, developed methods of qualitative reasoning, which 
serve as a bridge between the symbolic methods of AI and the differential equations used 
in physics and engineering. Judea Pearl (1988, 2000), who has developed techniques for 
applying statistics and probability to AI, introduced belief networks, which are causal 
networks whose links are labeled with probabilities.  

Different methods of reasoning can be applied to the same basic graph, such as Figure 11, 
sometimes with further annotations to indicate truth values or probabilities. Following are 
two of the major approaches:  

Logic. Methods of logical inference are used in truth-maintenance systems (Doyle 
1979; de Kleer 1986). A TMS would start at nodes whose truth values are known 
and propagate them throughout the network. For the case of the person who 
slipped on the grass, it would start with the value T for the fact that the grass is 
slippery and work backwards. Alternatively, a TMS could start with the fact that 
it is now the rainy season and work forwards. By combinations of forward and 
backward reasoning, a TMS propagates truth values to nodes whose truth value is 
unknown. Besides deducing new information, a TMS can be used to verify 
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consistency, search for contradictions, or find locations where the expected 
implications do not hold. When contradictions are found, the structure of the 
network may be modified by adding or deleting nodes; the result is a kind of 
nonmonotonic reasoning called belief revision.  
Probability. Much of the forward and backward reasoning used with a TMS can 
also be adapted to a probabilistic interpretation, since truth can be considered a 
probability of 1.0 and fasity as 0.0. The continuous range of probabilities from 1.0 
to 0.0, however, raises the need for more subtle interpretations and more 
complexity in the computations. The most detailed study of probabilistic 
reasoning in causal or belief networks has been done by Pearl (2000). For Figure 
11, a two-valued {T, F} interpretation is only a rough approximation, since it 
doesn't rain every day in a rainy season and a sprinkler might not be used even in 
a dry season. Pearl analyzed various techniques for applying Bayesian statistics to 
derive a causal network from observed data and to reason about it.  

In both the logic-based and the proabilistic systems, the relational information that was 
used to derive the implications is ignored by the inference procedures. Doyle developed 
the first TMS by extracting a subgraph of implications from the rules of an expert system. 
Martins and Shapiro (1988) extracted a TMS from SNePS by analyzing only the Boolean 
connectives that link propositional nodes. Similar techniques could be applied to other 
propositional networks to derive an implicational subgraph that could be analyzed by 
logical or probabilistic methods.  

Although implicational networks emphasize implication, they are capable of expressing 
all the Boolean connectives by allowing a conjunction of inputs to a propositional node 
and a disjunction of outputs. Gerhard Gentzen (1935) showed that a collection of 
implications in that form could express all of propositional logic. Following is the general 
form of an implication written in Gentzen's clause form:  

p1, ..., pn q1, ..., qm  
 
The p's are called the antecedents of the implication, and the q's are called the 
consequents. The generalized rule of modus ponens states that when every one of the 
antecedents is true, at least one of the consequents must be true. In effect, the commas in 
the antecedent have the effect of and operators, and the commas in the consequent have 
the effect of or operators. Doyle's original TMS only allowed one term in the consequent; 
the resulting form, called Horn-clause logic, is widely used for expert systems. To 
support full propositional logic, later versions of TMS have been generalized to allow 
multiple or operators in the consequent.  

4. Executable Networks 
Executable semantic networks contain mechanisms that can cause some change to the 
network itself. The executable mechanisms distinguish them from networks that are static 
data structures, which can only change through the action of programs external to the net 
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itself. Three kinds of mechanisms are commonly used with executable semantic 
networks:  

1. Message passing networks can pass data from one node to another. For some 
networks, the data may consist of a single bit, called a marker, token, or trigger; 
for others, it may be a numeric weight or an arbitrarily large message.  

2. Attached procedures are programs contained in or associated with a node that 
perform some kind of action or computation on data at that node or some nearby 
node.  

3. Graph transformations combine graphs, modify them, or break them into smaller 
graphs. In typical theorem provers, such transformations are carried out by a 
program external to the graphs. When they are triggered by the graphs 
themselves, they behave like chemical reactions that combine molecules or break 
them apart.  

These three mechanisms can be combined in various ways. Messages passed from node 
to node may be processed by procedures attached to those nodes, and graph 
transformations may also be triggered by messages that appear at some of the nodes.  

An important class of executable networks was inspired by the work of the psychologist 
Otto Selz (1913, 1922), who was dissatisfied with the undirected associationist theories 
that were then current. As an alternative, Selz proposed schematic anticipation as a goal-
directed method of focusing the thought processes on the task of filling empty slots in a 
pattern or schema. Figure 12 is an example of a schema that Selz asked his test subjects 
to complete while he recorded their verbal protocols.  

 

Figure 12.  A schema used in Otto Selz's experiments  

The expected answers for the empty slots in Figure 12 are the supertypes of the words at 
the bottom: the supertype of Newspaper and Magazine is Periodical, and the supertype of 
Periodical and Book is Publication. This task is actually more difficult in German than in 
English: Selz's subjects tried to find a one-word supertype for Zeitung (Newspaper) and 
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Zeitschrift (Magazine), but the correct answer in German is the two-word phrase 
periodische Druckschrift.  

The similarity between Selz's method of schematic anticipation and the goal-directed 
methods of AI is not an accident. Two of the pioneers in AI, Herbert Simon and Allen 
Newell, learned of Selz's theories from one of their visitors, the psychologist and 
chessplayer Adriaan de Groot (Simon 1981). In his analysis of chess playing, de Groot 
(1965) applied Selz's theories and methods of protocol analysis to the verbal reports of 
chessplayers ranging from novices to grandmasters. Newell and Simon (1972) adopted 
Selz's method of protocol analysis for their study of human problem solving. Their 
student, Ross Quillian (1966), combined Selz's networks with the semantic networks used 
in machine translation. Quillian's most significant innovation was the marker passing 
algorithm for spreading activations, which was adopted for later systems, such as NETL 
by Scott Fahlman (1979) and the massively parallel algorithms by Hendler (1987; 1992) 
and Shastri (1991; 1992).  

The simplest networks with attached procedures are dataflow graphs, which contain 
passive nodes that hold data and active nodes that take data from input nodes and send 
results to output nodes. Figure 13 shows a dataflow graph with boxes for the passive 
nodes and diamonds for the active nodes. The labels on the boxes indicate the data type 
(Number or String), and the labels on the diamonds indicate the name of the function (+, 
×, or convert string to number).  

 

Figure 13.  A dataflow graph  

For numeric computations, dataflow graphs have little advantage over the algebraic 
notation used in common programming languages. Figure 13, for example, would 
correspond to an assignment statement of the following form:  

X = (A + B) * S2N(C)  
 
Graphic notations are more often used in an Integrated Development Environment (IDE) 
for linking multiple programs to form a complete system. When dataflow graphs are 
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supplemented with a graphic method for specifying conditions, such as if-then-else, and a 
way of defining recursive functions, they can form a complete programming language, 
similar to functional programming languages such as Scheme and ML.  

Petri nets, first introduced by Carl Adam Petri (1962), are the most widely-used 
formalism that combines marker passing with procedures. Like dataflow diagrams, Petri 
nets have passive nodes, called places, and active nodes, called transitions. In addition, 
they have a set of rules for marking places with dots, called tokens, and for executing or 
firing the transitions. To illustrate the flow of tokens, Figure 14 shows a Petri net for a 
bus stop where three tokens represent people waiting and one token represents an arriving 
bus.  

 

Figure 14.  Petri net for a bus stop  

At the upper left of Figure 14, each of the three tokens represents one person waiting at 
the bus stop. The token at the upper right represents an arriving bus. The transition 
labeled Bus stops represents an event that fires by removing the token from the arriving 
place and putting a token in the waiting place. When the bus is waiting, the transition 
labeled One person gets on bus is enabled because it has at least one token in both of its 
input places. It fires by first removing one token from both of its input places and putting 
one token in both of its output places (including the Bus waiting place from which one 
token had just been removed). As long as the bus is waiting and there are more people 
waiting, that transition can keep firing. It stops firing when either there are no more 
people waiting or the Bus starts transition fires by removing the token for the waiting bus 
and putting a token in the place for Bus leaving.  

Each place in a Petri net represents a precondition for the transitions that use it as an 
input and a postcondition for the transitions that uses it as an output. A token in a place 
asserts that the corresponding condition is true. By removing a token from each input 
place, the firing of a transition retracts the assertions of its preconditions. By adding a 
token to each output place, the firing asserts that each of the postconditions has become 
true. Petri nets can be used to model or simulate physical events, as in the example of 
Figure 14. They can also be used to model processes that take place in computer 
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hardware and software; they are especially useful for designing and modeling distributed 
parallel processes. In Figure 14, each token represents a single bit of information, but an 
extension, called colored Petri nets, can associate an arbitrary amount of data with each 
token (Jensen 1992). With such extensions, Petri nets can represent arbitrarily many 
dataflow graphs running in parallel or simulate the various marker passing algorithms 
used in semantic networks in the Quillian tradition.  

Although dataflow graphs and Petri nets are not usually called semantic networks, similar 
techniques have been implemented in procedural semantic networks. At the University of 
Toronto, John Mylopoulos and his students and colleagues have implemented a series of 
semantic networks with attached procedures (Levesque & Mylopoulos 1979; Mylopoulos 
1992). Their systems incorporate definitional networks for defining classes, assertional 
networks for stating facts, and procedures similar to the methods of object-oriented 
programming languages. For conceptual graphs, Sowa (1976, 1984) allowed some 
relation nodes to be replaced by actors, which are functions that form the equivalent of a 
dataflow graph.  

Besides markers and procedures, the third method for making networks executable is to 
let them grow and change dynamically. Peirce and Selz could also be considered pioneers 
of that approach. Peirce said that the inference operations on existential graphs could be 
considered "a moving picture of thought." For schematic anticipation, Selz considered a 
schema to be the cause of the neural activity that generates a solution to a problem. 
Formally, transformations on networks can be defined without reference to the 
mechanisms that perform the transformations. In Petri nets, for example, the definition 
states that a transition may "fire" when each of its input nodes contains a token; the 
mechanism that performs the firing could be internal or external to the transition. For a 
computer implementation, it may be convenient to treat the networks as passive data 
structures and to write a program that manipulates them. For a cognitive theory, however, 
the transformations could be interpreted as network operations intitiated and carried out 
by the network itself. Either interpretation could be consistent with the same formal 
definitions.  

5. Learning Networks 
A learning system, natural or artificial, responds to new information by modifying its 
internal representations in a way that enables the system to respond more effectively to its 
environment. Systems that use network representations can modify the networks in three 
ways:  

1. Rote memory.  The simplest form of learning is to convert the new information to 
a network and add it without any further changes to the current network.  

2. Changing weights.  Some networks have numbers, called weights, associated with 
the nodes and arcs. In an implicational network, for example, those weights might 
represent probabilities, and each occurrence of the same type of network would 
increase the estimated probability of its recurrence.  
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3. Restructuring.  The most complex form of learning makes fundamental changes 
to the structure of the network itself. Since the number and kinds of structural 
changes are unlimited, the study and classification of restructuring methods is the 
most difficult, but potentially the most rewarding if good methods can be found.  

Systems that learn by rote or by changing weights can be used by themselves, but 
systems that learn by restructuring the network typically use one or both of the other 
methods as aids to restructuring.  

Commercially, rote memory is of enormous importance, since the world economy 
depends on exact record keeping. For such applications, information is sometimes stored 
in tables, as in relational databases, but networks are also used. Either representation 
could be converted to the other. For better efficiency and usability, most database 
systems add indexes to speed up the search, and they support query languages, such as 
SQL, which perform transformations to extract and combine the information necessary to 
answer a request. Since a learning system must be able to distinguish common features 
and exceptions among similar examples, another feature is essential: the ability to 
measure similarity and to search the database for networks that are similar, but not 
identical to any given example.  

Neural nets are a widely-used technique for learning by changing the weights assigned to 
the nodes or arcs of a network. Their name, however, is a misnomer, since they bear little 
resemblance to actual neural mechanisms. Figure 15 shows a typical neural net, whose 
input is a sequence of numbers that indicate the relative proportion of some selected 
features and whose output is another sequence of numbers that indicate the most likely 
concept charcterized by that combination of features. In an application such as optical 
character recognition, the features might represent lines, curves, and angles, and the 
concepts might represent the letters that have those features.  

 

Figure 15.  A neural net  
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In a typical neural network, the structure of nodes and arcs is fixed, and the only changes 
that may occur are the assignments of weights to the arcs. When a new input is presented, 
the weights on the arcs are combined with the weights on the input features to determine 
the weights in the hidden layers of the net and ultimately the weights on the outputs. In 
the learning stage, the system is told whether the predicted weights are correct, and 
various methods of backpropagation are used to adjust the weights on the arcs that lead 
to the result.  

Rote memory is best suited to applications that require exact retrieval of the original data, 
and methods of changing weights are best suited to pattern recognition. For more 
versatile and creative kinds of learning, some way of restructuring the network is 
necessary. But the number of options for reorganizing a network is so vast that the full 
range of possibilities is largely unexplored. Following are some examples:  

1. Patrick Winston (1975) used a version of relational graphs to describe structures, 
such as arches and towers. When given positive and negative examples of each 
type of structure, his program would generalize the graphs to derive a definitional 
network for classifying all the types that were considered.  

2. Haas and Hendrix (1983) developed the NanoKlaus system that would learn 
definitional networks by being told. Unlike Winston's system, which required a 
set of examples that included all significant features, NanoKlaus would carry on a 
dialog until it the features it had been told were sufficient to distinguish all the 
specified types.  

3. George Lendaris (1988a,b) developed a two-stage learning system that combined 
conceptual graphs with neural networks. Both stages used a neural network with 
backpropagation; but in the first stage, the inputs were features, and the outputs 
were concepts, as in Figure 15. In the second stage, each input represented a 
conceptual graph constructed from the concepts recognized by the first stage, and 
the outputs represented complex scenes described by those graphs. The two-stage 
system had a significantly reduced error rate and a faster learning rate than 
networks that matched features to scenes directly.  

4. In case-based reasoning (Kolodner 1993; Schank & Riesbeck 1994), the learning 
system uses rote memory to store various cases, such as medical diagnoses or 
legal disputes. For each case, it stores associated information, such as the 
prescribed treatment and its outcome or the legal argument and the court 
judgment. When a new case is encountered, the system finds those cases that are 
most similar to the new one and retrieves the outcome. Crucial requirements for 
the success of case-based reasoning are good similarity measures and efficient 
ways of searching for similar cases. To organize the search and evaluate 
similarity, the learning system must use restructuring to find common patterns in 
the individual cases and use those patterns as the keys for indexing the database.  

5. Basili, Pazienza, and Velardi (1993; 1996) developed methods of learning 
semantic patterns from a corpus of natural-language text. They started with a 
syntactic parser supplemented with a lexicon that had a limited amount of 
semantic information about the lexical patterns expected for each word. Then they 
used the parser to analyze the corpus and derive more detailed networks that 
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represented the semantic patterns that occurred in the text. The system generalized 
those patterns to hypothesize better definitions of the lexical semantics for the 
words, which a linguist would verify before adding them to the lexicon. The 
system could then use the revised lexicon to reparse the corpus and further refine 
the definitions.  

6. Robert Levinson (1996) developed a general system for learning to play board 
games such as chess or checkers. For each kind of game, the system was given the 
rules for making legal moves, but no further information about which moves are 
good or bad and no information about how to determine whether a game is won or 
lost. During the learning phase, the system would play games against a tutor 
(usually another program that plays very well, such as Gnu Chess). At the end of 
each game, the tutor would inform the system of a win, loss, or draw.  

For the learning phase, Levinson used a combination of rote learning as in case-
based reasoning, restructuring to derive significant generalizations, a similarity 
measure based on the generalizations, and a method of backpropagation to 
estimate the value of any case that occurred in a game. For playing chess, the 
cases were board positions represented as graphs. Every position that occurred in 
a game was stored in a generalization hierarchy, such as those used in definitional 
networks. At the end of each game, the system used backpropagation to adjust the 
estimated values of each position that led to the win, loss, or draw. When playing 
a game, the system would examine all legal moves from a given position, search 
for similar positions in the hierarchy, and choose the move that led to a position 
whose closest match had the best predicted value.  

These examples don't exhaust the all the ways of using restructuring, but they illustrate its 
potential for learning sophisticated kinds of knowledge.  

6. Hybrid Networks 
Many computer systems are hybrids, such as a combination of a database system for 
storing data, a graphics package for controlling the user interface, and a programming 
language for detailed computation. For knowledge representation, the Krypton system 
(Brachman et al. 1983) was a hybrid of a definitional network based on KL-ONE with an 
expert system that used a linear notation for asserting rules and facts. By the criteria used 
for calling Krypton a hybrid, most object-oriented programming languages could be 
considered hybrids:  the C++ language, for example, is a hybrid of the procedural 
language C with a definitional language for defining types or classes. Systems are usually 
called hybrids if their component languages have different syntax. Conceptual graphs, for 
example, include a definitional component for defining types and an assertional 
component that uses the types in graphs that assert propositions. But CGs are not usually 
considered hybrids because the syntax of the definitional component is the same as the 
syntax of the assertional component.  

The most widely used hybrid of multiple network notations is the Unified Modeling 
Language (UML), which was by designed by three authors, Grady Booch, Ivar Jacobson, 
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and Jim Rumbaugh, who merged their competing notations (Rational Software 1997). 
Although UML is not usually called a semantic network, its notations can be classified 
according to the categories of semantic networks discussed in this article:  

Central to UML is a definitional network for defining object types. It includes the 
basic features of the Tree of Porphyry shown in Figure 1: type-subtype links, 
type-instance links, attributes that serve as differentiae for distinguishing a type 
from its supertype, and the inheritance of attributes from supertype to subtype.  
UML includes two kinds of executable networks that can be considered special 
cases of Petri nets: statecharts, which are special cases of Petri nets that do not 
support parallelism; and activity diagrams, which are almost identical to Petri 
nets, except that they do not use tokens to fire the transitions.  
The other networks in the UML family can be considered versions of relational 
graphs that are specialized for representing metalevel information. They include, 
for example, a version of entity-relationship diagrams (Chen 1976), which are 
relational graphs designed for expressing the cardinality constraints and parameter 
types of relations.  
The most general of all the UML notations is a linear notation called the Object 
Constraint Language (OCL). It is a version of first-order logic with a notation that 
has syntactic features similar to some O-O programming languages. As an 
example, the following OCL statement says that all parameters of an entity have 
unique names:  

self.parameter->forAll(p1, p2 | 
   p1.name=p2.name implies p1=p2). 

In OCL, self refers to the current entity being defined, and the names of functions 
are written after the entity to which they apply. In predicate calculus, the order 
would be interchanged: p1.name would be written name(p1). Following is a 
translation of the OCL statement to predicate calculus with the symbol #self 
representing the current entity.  

( p1)( p2) 
   ((p1 parameter(#self)  p2 parameter(#self)  name(p1) 
=name(p2)) 
       p1=p2). 

This formula says that for every p1 and p2, if p1 is a parameter of self and p2 is a 
parameter of self and the name of p1 is equal to the name of p2, then p1 is equal to 
p2.  
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UML has been criticized for its lack of a formal definition, which has resulted in 
inconsistencies between its various notations (Kent et al. 1999). Work is underway to 
revise UML with formal definitions for all the notations. One approach would be to 
extend OCL with sufficient features to define all the other notations. Another possibility 
would be to design a propositional semantic network that was equivalent to full first-
order logic plus metalevel extensions and use it to define everything in UML.  

7. Graphic and Linear Notations 
Graph notations and linear notations can express logically equivalent information, but 
with different syntactic conventions. The relational graph in Figure 4 and its translation to 
a formula in predicate calculus illustrate the differences between the two kinds of 
notations:  

1. Both notations have seven occurrences of relation names, such as isStagirite or 
teaches.  

2. They both have three occurrences of existential quantifiers, represented by three 
branching lines in the graph and by ( x), ( y), and ( z) in the formula.  

3. The major difference lies in the way the connections from the quantifiers to the 
relations are shown:  each line is directly connected to the relations, but 13 
occurrences of the variables x, y, and z are scattered throughout the formula.  

The chief advantage of graph notations is the ability to show direct connections. Linear 
notations must rely on repeated occurrences of variables or names to show the same 
connections.  

As another example, Petri nets, which are usually expressed in a graphic notation, are 
formally equivalent to a notation called linear logic. Although Petri nets and linear logic 
were independently developed by different researchers for different purposes, a 
commonly used version of Petri nets happens to be isomorphic to a commonly used 
version of linear logic (Troelstra 1992). Following is a translation of the Petri net of 
Figure 14 to that version of linear logic:  

BusStops: 
   BusArriving  BusWaiting 
 
OnePersonGetsOnBus: 
   PersonWaiting & BusWaiting  PersonOnBus & BusWaiting 
 
BusStarts: 
   BusWaiting  BusLeaving 
 
InitialAssertions: 
   PersonWaiting.  PersonWaiting.  PersonWaiting.  BusArriving. 
Each arrow ( ) in this example represents one of the transitions in the Petri net. The 
feature of linear logic that distinguishes it from classical first-order logic is the treatment 
of implication. For comparison, following is an application of modus ponens in classical 
FOL, its replacement in linear logic, and the rule for firing a transition in Petri nets:  
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Classical FOL.  Given propositions p and q and an implication p q r s, 
conclude r and s. Everything that was previously true remains true.  
Linear logic.  Given propositions p and q and an implication p&q r&s, 
conclude r and s and retract the truth of p and q.  
Petri nets.  Given tokens in the places p and q and a transition p,q r,s, add one 
token to each of the places r and s and erase one token from each of the places p 
and q.  

When the presence of a token in a place of a Petri net is intepreted as meaning the truth of 
the corresponding proposition, the rule for firing a transition is equivalent to using an 
implication in linear logic. Therefore, any collection of implications and assertions in 
linear logic can be represented by a Petri net, and any proof in linear logic corresponds to 
an execution of the Petri net.  

One of the major arguments for graphic notations is human readability, but proponents of 
linear notations often argue that their notations are also highly readable. Each rule in 
linear logic, for example, is quite readable, but the relationships between rules are not as 
immediately readable as the direct connections in the Petri net.  

As an example, consider the proposition BusWaiting, which is represented by a single 
place in the Petri net with two inputs and two outputs. That fact can be seen immediately 
from Figure 14, but a reader would have to search through all of the rules in the linear 
logic example to verify that the name BusWaiting occurs four times. As examples 
become larger, any notation become more difficult to read, but the graphic notations still 
have an advantage over linear notations. Petri nets have been implemented with many 
thousands of nodes, but it is always possible to look at any node and see immediately 
how many inputs and outputs it has and where they are linked.  

Besides readability, graphic notations often have heuristic value in helping human readers 
(either students or researchers) to discover patterns that would be difficult or impossible 
to see in the linear form. The reason why Peirce called his existential graphs "the logic of 
the future" was not so much their readability as the direct insight they provided into the 
structure of proofs. With EGs, Peirce invented the simplest and most elegant rules of 
inference ever developed for any version of logic. Peirce's rules, which he discovered in 
1897, are a simplification and generalization of the rules of natural deduction that 
Gentzen (1935) reinvented many years later. Even today, Peirce's rules lead to insights 
that have eluded logicians for many years. As an example, Larry Wos (1988) listed 33 
unsolved research problems in automated reasoning, of which problem 24 asks about the 
relationship between proofs using Gentzen's rules for clauses and his rules of natural 
deduction:  

Is there a mapping between clause representation and natural-deduction representation 
(and corresponding inference rules and strategies) that causes reasoning programs based 
respectively on the two approaches or paradigms to attack a given assignment in an 
essentially identical fashion?  



Source: http://www.jfsowa.com/pubs/semnet.htm 

25 

The answer follows from two theorems that are easy to prove when expressed in Peirce's 
notation (Sowa forthcoming):  

1. Any proof by Gentzen's system of natural deduction can be converted 
automatically to a proof by Peirce's rules and vice versa.  

2. Any proof derived by a resolution theorem prover in clause form can be converted 
to a proof using Peirce's rules by negating each step, reversing the order, and 
writing each step as an existential graph.  

Some very good logicians had been working on this problem for years, but they couldn't 
see the solution because they were using predicate calculus, which is based on Peirce's 
algebraic notation. In Peirce's graph notation, the answer is obvious.  
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Glossary 
assertional network  

A semantic network that is designed to assert propositions.  
Begriffsschrift  

A propositional semantic network that used a tree representation for the first 
notation that could express all possible propositions of first-order logic.  

belief network  
An implicational network in which the nodes represent beliefs and an arc from 
belief b1 to b2 indicates that b1 implies b2.  

causal network  
An implicational network in which the nodes represent event types and an arc 
from event e1 to e2 indicates that e1 is a potential cause of e2.  

conceptual dependency graph  
A relational network that resembles a dependency graph, but the nodes represent 
language-independent concepts rather than language-dependent words.  

conceptual graph (CG)  
A propositional semantic network whose nodes represent concepts and conceptual 
relations; type labels on the concept nodes make CGs into a typed or sorted 
version of existential graphs in which the EG ovals are represented by concepts of 
type Proposition.  

correlational net  
A definitional network that used a set of 56 different relation types for 
representing patterns used to guide a parser for disambiguating sentences in 
machine translation; it is one of the first semantic networks implemented on a 
digital computer.  

dataflow graph  
An executable network with passive nodes that hold data and active nodes that 
represent functions that take data from input nodes and place computed results in 
output nodes.  

definitional network  
A semantic network that emphasizes the subtype or is-a relation between a 
concept type and a more specialized subtype that is being defined; the more 
general concept is called a supertype or hypernym, and the more specialized 
concept is called a subtype or hyponym.  

dependency graph  
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A relational network that is used to represent the linguistic relations that hold 
between the words of a sentence in a natural language; it expresses the result of 
analyzing a sentence by using a dependency grammar.  

description logic (DL)  
A kind of logic that is often represented in a definitional network; description 
logics are designed to represent a subset of logic that enables the placement of any 
concept type in the network to be efficiently computed from its definition.  

discourse representation structure (DRS)  
A propositional semantic network in which propositions are reprented by boxes, 
which may contain some information expressed in a linear notation and other 
information expressed by nested boxes; the nesting of propositions in DRSs is 
isomorphic to the nesting in CGs and EGs.  

executable network  
A semantic network that includes some computational mechanism, such as 
message passing or attached procedures, which enable it to perform inferences, 
pass messages, search for patterns, or cause changes to itself or to other kinds of 
information structures.  

existential graph (EG)  
A propositional semantic network that combines relational graphs with oval nodes 
that may contain other EGs or RGs; when the ovals are used to negate the nested 
graphs, an EG can represent any proposition in first-order logic, but the ovals can 
also be used to represent modal and metalevel information about the nested 
graphs.  

hybrid network  
A semantic network that supports two or more functions, such as asserting, 
defining, inferencing, computing, or learning.  

implicational network  
A semantic network that uses implication relations to indicate patterns of beliefs, 
causality, or inferences among the nodes.  

learning network  
A semantic network that can evolve to acquire new knowledge represented as 
additions or modifications to its nodes and arcs.  

neural network  
A learning network that uses dataflow techniques to compute numeric values; the 
learning methods change numeric weights on arcs that modify the values that pass 
through those arcs.  

Petri net  
A kind of dataflow graph with nodes called places that hold data called tokens and 
other nodes called transitions that remove tokens from their input nodes and put 
tokens in their output nodes; the rules for executing or firing the transitions make 
Petri nets formally equivalent to a version of linear logic.  

propositional semantic network  
An assertional network with nodes that represent propositions; it may also contain 
subnetworks or nested networks that express further information about those 
propositions.  

relational graph (RG)  
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A semantic network whose nodes represent entities and whose arcs represent 
relations that hold among the entities; the only logical operators that can be 
represented in a relational graph are conjunction and the existential quantifier.  

semantic network or net  
A graphic notation for representing knowledge in patterns of interconnected nodes 
and arcs.  

Semantic Network Processing System (SNePS)  
A system for performing inferences about a propositional semantic network; the 
SNePS notation is similar in expressive power to other propositional semantic 
networks such as conceptual graphs and discourse representation structures.  

Tree of Porphyry  
A definitional network that expresses a version of description logic; it is the oldest 
known semantic network, drawn in a commentary on Aristotle's categories by the 
philosopher Porphyry in the 3rd century AD.  

truth maintenance system (TMS)  
An implicational network whose nodes represent some propositions whose truth 
values are known and others whose truth values must be determined; a TMS is 
used to propagate truth values in order to verify consistency, search for 
contradictions, or find nodes where the expected implications do not hold.  

 


